1,145 research outputs found

    Astrobiology in the Field: Studying Mars by Analogue Expeditions on Earth

    Get PDF
    We will present a strategy for how one prepares to engage in fieldwork on another planets by practicing in analogous environments on the Earth, including at Mono Lake. As an example, we will address the problem of how to study the habitability of an environment when you have no idea what kind of life might be there to exploit it. This will all be related to the upcoming launch of the Mars Science Laboratory to Mars in late November this year

    Sniffing out the Story on the Habitability Potential of Mars: Follow the Volatiles!

    Get PDF
    Curiosity's primary goal is to explore and quantitatively assess a local region on Mars' surface as a potential habitat for life, past or present. This presentation will discuss what makes a habitable environment with some scientific data from the mars rover

    Environmental Signatures for Habitability: What to Measure and How to Rank the Habitability Potential of Mars

    Get PDF
    The environmental signatures for habitability are not necessarily biosignatures, even though on Earth, they are definitive proof of habitability. It is the constant overprint of the chemical signatures of life that makes it difficult to recognize the chemical and physical properties of a potentially habitable environment as distinct from an inhabited one. Mars Science Laboratory (MSL) will soon embark on a mission to Mars to assess its past or present habitability, so it is useful to examine how we measure habitability on Earth and prepare for how that approach may differ for Mars. This exercise includes: (a) articulation of fundamental assumptions about habitability, (b) an inventory of factors that affect habitability, (c) development of metrics, measurement approach and implementation, and (d) a new classification scheme for planetary habitability that goes beyond the binary "yes" or "no." There may be dozens of factors that affect habitability and they can be weighted as a function of specific environment. However a robotic, in situ investigation even on Earth has constraints that prevent the measurement of every environmental factor, so metrics must be reduced to the most relevant subset, given available time, cost, technical feasibility and scientific importance. Many of the factors could be measured with a combination of orbital data and the MSL payload. We propose that, at a minimum, a designation of high habitability potential requires the following conditions be met: (a) thermally stable with respect to extremes and frequency of fluctuation, (b) has more than one energy source, (c) sufficient chemical diversity to make compounds with covalent and hydrogen bonding, (d) can moderate ionizing radiation enough to allow a stable or evolving pool of organic molecules, (e) must have water or other high quality polar solvent, (f) must be able to renew chemical resources (e.g., plate tectonics, volcanism or something else we haven't envisioned). A measurement approach we have taken to measure habitability on Earth is : 1. Study remote sensing data, maps, etc. 2. Decide how big an area to measure. 3. Determine the spatial sampling rate. 4. Determine the temporal sampling rate. 5. Determine the order of measurements 6. Decide where to begin measurements 7. Select locations at field site and proceed While science drives each of the steps, there are additional constraints, e.g., technical, time, cost, safety (risk). This approach is also executable on Mars. Measurement of past habitability is more challenging both for Earth and Mars where access to the past means subsurface access and confrontation with unknowns about preservation of the martian past. Some environments preserve evidence of past habitability better than others, and this is where selection of the landing site to maximize the preservation potential of habitability indicators will be key. Mars presents an opportunity to discover transitional states between habitable or not, and we offer a ranking scale for planetary habitability with Mars as the second test subject: CLASS ONE Uninhabitable and likely has never been so CLASS TWO Has a high potential but no confirmed observation of life (as defined above) CLASS THREE Inhabited (we find life) 3-A Globally inhabited 3-B Primitive life; early in its evolution, but not yet globally established 3-C Exists only in refugia -- planet heading toward class four CLASS FOUR Post-habitable (there once was life, but now it's gone) MSL provides an opportunity to carefully investigate the habitability of at least one site on Mars and it will reveal much about the possible states of planetary habitabilit

    Evolved Gas Measurements Planned for the Lower Layers of the Gale Crater Mound with the Sample Analysis at Mars Instrument Suite

    Get PDF
    The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at aMars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-60s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000 C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will illustrate through a variety of evolved gas experiments implemented under SAM-like gas flow and temperature ramp conditions on terrestrial analog minerals on high fidelity Sam breadboards the type of chemical information we expect SAM to provide

    A Digital Neuromorphic Architecture Efficiently Facilitating Complex Synaptic Response Functions Applied to Liquid State Machines

    Full text link
    Information in neural networks is represented as weighted connections, or synapses, between neurons. This poses a problem as the primary computational bottleneck for neural networks is the vector-matrix multiply when inputs are multiplied by the neural network weights. Conventional processing architectures are not well suited for simulating neural networks, often requiring large amounts of energy and time. Additionally, synapses in biological neural networks are not binary connections, but exhibit a nonlinear response function as neurotransmitters are emitted and diffuse between neurons. Inspired by neuroscience principles, we present a digital neuromorphic architecture, the Spiking Temporal Processing Unit (STPU), capable of modeling arbitrary complex synaptic response functions without requiring additional hardware components. We consider the paradigm of spiking neurons with temporally coded information as opposed to non-spiking rate coded neurons used in most neural networks. In this paradigm we examine liquid state machines applied to speech recognition and show how a liquid state machine with temporal dynamics maps onto the STPU-demonstrating the flexibility and efficiency of the STPU for instantiating neural algorithms.Comment: 8 pages, 4 Figures, Preprint of 2017 IJCN

    The Mars Science Laboratory Organic Check Material

    Get PDF
    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples

    The Mineralogical and Chemical Case for Habitability at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    Sediments of the Yellowknife Bay formation (Gale crater) include the Sheepbed member, a mudstone cut by light-toned veins. Two drill samples, John Klein and Cumberland, were collected and analyzed by the CheMin XRD/XRF instrument and the Sample Analysis at Mars (SAM) evolved gas and isotopic analysis suite of instruments. Drill cuttings were also analyzed by the Alpha Particle X-ray Spectrometer (APXS) for bulk composition. The CheMin XRD analysis shows that the mudstone contains basaltic minerals (Fe-forsterite, augite, pigeonite, plagioclase), as well as Fe-oxide/hydroxides, Fe-sulfides, amorphous materials, and trioctahedral phyllosilicates. SAM evolved gas analysis of higher-temperature OH matches the CheMin XRD estimate of ~20% clay minerals in the mudstone. The light-toned veins contain Ca-sulfates; anhydrite and bassanite are detected by XRD but gypsum is also indicated from Mastcam spectral mapping. These sulfates appear to be almost entirely restricted to late-diagenetic veins. The sulfate content of the mudstone matrix itself is lower than other sediments analyzed on Mars. The presence of phyllosilicates indicates that the activity of water was high during their formation and/or transport and deposition (should they have been detrital). Lack of chlorite places limits on the maximum temperature of alteration (likely <100 C). The presence of Ca-sulfates rather than Mg- or Fe-sulfates suggests that the pore water pH was near-neutral and of relatively low ionic strength (although x-ray amorphous Mg-and Fe- sulfates could be present and undetectable by CheMin). The presence of Fe and S in both reduced and oxidized states represents chemical disequilibria that could have been utilized by chemolithoautotrophic biota, if present. When compared to the nearby Rocknest sand shadow mineralogy or the normative mineralogy of Martian soil, both John Klein and Cumberland exhibit a near-absence of olivine and a surplus of magnetite (7-9% of the crystalline component). The magnetite is interpreted as an authigenic product formed when olivine was altered to phyllosilicate. Saponitization of olivine (a process analogous to serpentinization) could have produced H2 in situ. Indeed, early diagenetic hollow nodules ("minibowls") present in the Cumberland mudstone are interpreted by some as forming when gas bubbles accumulated in the unconsolidated mudstone. Lastly, all of these early diagenetic features appear to have been preserved with minimal alteration since their formation, as indicated by the ease of drilling (weak lithification, lack of cementing phases), the presence of 20-30% amorphous material, and the late-stage fracturing with emplacement of calcium sulfate veins and minibowl infills, where they were intersected by veins. A rough estimate of the minimum duration of the lacustrine environment is provided by the minimum thickness of the Sheepbed member. Given 1.5 meters, and applying a mean sediment accumulation rate for lacustrine strata of 1 m/1000 yrs yields a duration of 1,500 years. If the aqueous environments represented by overlying strata are considered, such as Gillespie Lake and Shaler, then this duration increases. The Sheepbed mudstone meets all the requirements of a habitable environment: Aqueous deposition at clement conditions of P, T, pH, Eh and ionic strength, plus the availability of sources of chemical energy

    Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fractalkine/CX<sub>3</sub>CL1 and its cognate receptor CX<sub>3</sub>CR1 are abundantly expressed in the CNS. Fractalkine is an unusual C-X3-C motif chemokine that is important in neuron-microglial communication, a co-receptor for HIV infection, and can be neuroprotective. To assess the effects of fractalkine on opiate-HIV interactive neurotoxicity, wild-type murine striatal neurons were co-cultured with mixed glia from the striata of wild-type or <it>Cx3cr1 </it>knockout mice ± HIV-1 Tat and/or morphine. Time-lapse digital images were continuously recorded at 20 min intervals for up to 72 h using computer-aided microscopy to track the same cells repeatedly.</p> <p>Results</p> <p>Co-exposure to Tat and morphine caused synergistic increases in neuron death, dendritic pruning, and microglial motility as previously reported. Exogenous fractalkine prevented synergistic Tat and morphine-induced dendritic losses and neuron death even though the inflammatory mediator TNF-α remained significantly elevated. Antibody blockade of CX<sub>3</sub>CR1 mimicked the toxic effects of morphine plus Tat, but did not add to their toxicity; while fractalkine failed to protect wild-type neurons co-cultured with <it>Cx<sub>3</sub>cr1</it><sup>-/-</sup>-null glia against morphine and Tat toxicity. Exogenous fractalkine also normalized microglial motility, which is elevated by Tat and morphine co-exposure, presumably limiting microglial surveillance that may lead to toxic effects on neurons. Fractalkine immunofluorescence was expressed in neurons and to a lesser extent by other cell types, whereas CX<sub>3</sub>CR1 immunoreactivity or GFP fluorescence in cells cultured from the striatum of <it>Cx3cr1</it><sup>-/- </sup>(<it>Cx3cr1</it><sup>GFP/GFP</sup>) mice were associated with microglia. Immunoblotting shows that fractalkine levels were unchanged following Tat and/or morphine exposure and there was no increase in released fractalkine as determined by ELISA. By contrast, CX<sub>3</sub>CR1 protein levels were markedly downregulated.</p> <p>Conclusions</p> <p>The results suggest that deficits in fractalkine-CX<sub>3</sub>CR1 signaling contribute to the synergistic neurotoxic effects of opioids and Tat. Importantly, exogenous fractalkine can selectively protect neurons from the injurious effects of chronic opioid-HIV-1 Tat co-exposure, and this suggests a potential therapeutic course for neuroAIDS. Although the cellular mechanisms underlying neuroprotection are not certain, findings that exogenous fractalkine reduces microglial motility and fails to protect neurons co-cultured with <it>Cx3cr1</it><sup>-/- </sup>mixed glia suggest that fractalkine may act by interfering with toxic microglial-neuron interactions.</p

    5-teilige Sonderausgabe des KOBV-Newsletters – 24. bis 30. Oktober 2016

    Get PDF
    An der internationalen Open-Access-Woche 2016 vom 24.-28. Oktober war der KOBV erstmalig mit einem Online „Publishing Event“ beteiligt. An fünf aufeinanderfolgenden Tagen erschien täglich eine Sonderausgabe des KOBV- Newsletters zu ausgewählten Open-Access-Themen. Die einzelnen Beiträge sind in dieser Sonderedition als Online-Reader zusammengestellt. Der aktuelle Diskussionsstand zum jeweiligen Thema wird von Expertinnen und Experten in kurzen Übersichtsartikeln vorgestellt und mit Praxistipps ergänzt. Zielgruppe sind vor allem Bibliothekare und Bibliothekarinnen, die sich einen schnellen Überblick zu Open Access verschaffen wollen
    corecore